
				

				Prev
	Next

Chapter 2. Using Scripts to Achieve More

	2.1. Scripting Scenarios
		2.1.1. File Related Capabilities
	2.1.2. Execute External Programs
	2.1.3. Publish Reports to Microsoft SharePoint Portal
	2.1.4. Distribute by SMS and Fax
	2.1.5. Print Reports
	2.1.6. Mail, FTP, FTPs and SFTP
	2.1.7. Upload Reports to a Shared Location
	2.1.8. Encrypt or Stamp the Output Reports

	2.2. Introduction to the Burst Lifecycle
		2.2.1.
				Bursting Context
			

	2.3. Sample Scripts
		2.3.1. zip.groovy
	2.3.2. encrypt.groovy
	2.3.3. overlay.groovy
	2.3.4. exec_pdftk_background.groovy
	2.3.5. print.groovy
	2.3.6. copy_shared_folder.groovy
	2.3.7. ant_ftp.groovy
	2.3.8. ant_scp_sftp.groovy
	2.3.9. ant_vfs.groovy
	2.3.10. add_and_format_page_numbers.groovy
	2.3.11. merge_with_external_files.groovy
	2.3.12. ant_mail.groovy
	2.3.13. skip_current_file_distribution_if.groovy
	2.3.14. batch_pdf_print.groovy
	2.3.15. fetch_distribution_details_from_database.groovy
	2.3.16. fetch_distribution_details_from_csv_file.groovy

	2.4. Further Reading

		Scripts can help in squeezing more
		tailored functionality from
		
			DocumentBurster™
			.
		
		For
		example, there is no GUI command to archive
		the
		output burst reports
		in
		a single compressed
		file, while with few lines of
		scripting it is easy
		to zip all the output files together.
	

		
			DocumentBurster™
		
		supports scripts written in Groovy, a scripting
		language for
		the Java
		platform.
		
			DocumentBurster™
		
		Groovy scripts
		can make
		use of any existing Java code and library.
	

		This chapter shows how to use the scripting
		capabilities
		of the software
		and how to customize
		
			DocumentBurster™
		
		using some
		existing sample scripts which are provided with the package.
	
2.1. Scripting Scenarios

			
				DocumentBurster™
			
			has support for injecting tailored behavior during
			the normal bursting
			lifecycle. There are a set of predefined exit points in
			which, using
			scripting, it is possible to implement custom logic. For
			example
			there
			is
			an
			endBursting
			lifecycle phase in which, with few lines
			of code, it is possible to
			zip
			together all the burst files, which otherwise would have come
			separated in the output folder.
		

			Following should give some ideas of the kind of things which are
			possible using
			
				DocumentBurster™
			
			scripting capabilities:
		
2.1.1. File Related Capabilities

				
	Copy
						- Copy a file or a set of files to a new file or directory.
					
	Delete
						- Deletes a single file, all files and sub-directories in a
						specified directory, or a set of files specified with an wildcard
						(*) like file pattern.
					
	Mkdir
						- Creates a directory. Non-existent parent directories are
						created,
						when necessary.
					
	Move
						- Moves a file to a new file or directory, or a set(s) of file(s)
						to a new directory.
					
	Archive
						- Zip, GZip, BZip2 or Tar the burst reports.
					
	Other file related capabilities
						- Change the permissions and/or attributes of a file or all files
						inside the specified directories,
						generate or verify a checksum for
						a file or set of files and also touch the files.
					

			

				Sample
			

				For an example on how to zip or delete files, please see
				the
				existing
				scripts/burst/samples/zip.groovy
				sample script.
			

2.1.2. Execute External Programs

				While integrating
				
					DocumentBurster™
				
				with existing
				software, following capability will be of interest.
				It
				is
				possible to
				call any external executable in some pre-defined
				points
				during
				the report bursting and report
				distribution flow.
			

				Exec
				- Execute a system command. When the OS attribute is specified, the
				command is only executed on one of the specified operating systems.
			

				Sample
			

				The external program to be demonstrated is
				Pdftk
			

				pdftk
				or the
				pdf toolkit
				is a cross-platform tool for
				manipulating
				PDF documents.
			

				It is easy to execute
				pdftk
				from within
				
					DocumentBurster™
				
				in order to achieve
				a wide range of additional powerful
				capabilities.
			

				pdftk
				is capable of splitting, merging,
				encrypting,
				decrypting,
				uncompressing, recompressing, and repairing
				PDFs.
				It can also be used
				to manipulate watermarks, metadata, and to
				fill
				PDF Forms
				with FDF
				Data
				(Forms Data Format) or XFDF Data (XML
				Form Data Format).
			

				
					Install Pdftk
				
			

				
	
						Please download
						pdftk
						from
						this location -
						http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/#download
	
						Make sure to download the binaries which are
						specific to
						the target operating system.
					
	
						Copy the
						pdftk.exe
						and
						libiconv2.dll
						in the folder
						where
						
							DocumentBurster™
						
						was installed, next
						to the
						DocumentBurster.exe
						file.
					

			

				

			

				Under
				Microsoft Windows,
				pdftk.exe
				and
				libiconv2.dll
				should be placed next to the
				DocumentBurster.exe
				file.
			

				For an example on how to execute
				pdftk
				during the
				report bursting lifecycle, please see the existing
				scripts/burst/samples/exec_pdftk_background.groovy
				
				sample script.
			

2.1.3. Publish Reports to Microsoft SharePoint Portal

				Using scripting, it is possible to publish reports
				directly
				to
				enterprise portals. Think to the use case where there are few
				hundreds or thousands of customers and dealers and, with a single
				click, the relevant individual reports can be made available
				to each
				one of them on the
				portal.
			

				
					DocumentBurster™
				
				is distributing the reports to portals using
				the WebDAV
				protocol.
				Following products, they all support WebDAV, so
				that
				
					DocumentBurster™
				
				is capable to distribute reports to the
				following:
			
	Microsoft SharePoint
	IBM WebSphere Portal
	Oracle Portal
	SAP NetWeaver
	Tibco PortalBuilder
	Samsung ACUBE Portal
	Liferay Portal, Hippo portal, JBoss Enterprise Portal,
						eXo and Apache Portal
					

2.1.4. Distribute by SMS and Fax

	SMS messages
					can be delivered, via email, through an online SMS gateway service.
					In such a scenario
					
						DocumentBurster™
					
					is configured to
					send an email to the SMS gateway in which the text
					of the message
					and the destination number are specified. The SMS
					gateway will
					transform the email message and
					will deliver it
					further,
					using SMS,
					to the specified number. Using scripting,
					
						DocumentBurster™
					
					can send configured SMS
					messages
					to any gateway
					service. For a list of
					available online SMS gateways
					just
					Google for
					'list of SMS gateways'
					. The SMS which is best fitting the needs can be selected and
					
						DocumentBurster™
					
					will distribute
					SMS messages using it.
				
	Fax the reports
						There are various ways of sending documents by fax
						using the
						computer.
					

						The simplest way is to use an existing fax online gateway to which
						the reports are sent as an email attachment.
						The gateway
						will
						further forward the reports by fax to the specified number.
						For a
						list of available online fax
						gateways just Google
						for
						'list of fax gateways'
						.
					

						As an alternative, it is possible to send faxes by
						configuring a
						dial-up modem to
						work with specialized
						fax
						software. Microsoft Fax
						can be used as a fax software service on Windows.
						For instructions
						on enabling
						Microsoft Fax, please consult the
						appropriate
						Microsoft
						knowledgebase article from the Microsoft
						website. HylaFAX or
						AsterFax™ - Asterisk Fax
						are valid fax software solutions which can
						be used on UNIX/Linux systems.
						Using scripting, it is possible to
						integrate
						
							DocumentBurster™
						
						with any of
						the previously
						enumerated fax
						products and this
						requires
						some customization
						effort to integrate with the specific
						fax
						vendor
						APIs.
					

2.1.5. Print Reports

				
					DocumentBurster™
				
				can print the output burst reports directly to
				physical printers.
			

				Sample
			

				For an example on how to print the output burst reports, please see
				the
				existing
				scripts/burst/samples/print.groovy
				sample script.
			

2.1.6. Mail, FTP, FTPs and SFTP

				With a little bit of scripting it is possible to send reports
				by email, upload to FTP or FTPs
				and copy files to SFTP using SSH.
			

				While sending the burst reports by email is available through
				the GUI
				interface, sometimes more flexibility can be achieved with the
				help
				of
				
					DocumentBurster™
				
				scripting. One example is that using scripting
				it is possible, if
				required, to send emails
				without attachments to any
				SMS
				gateway -
				by
				default, through the GUI
				interface, all the emails
				which
				are sent
				will
				have a corresponding
				burst report attached.
			

				Mail Sample
			

				For an example on how to send an ad-hoc email during the report
				bursting flow, please see
				scripts/burst/samples/ant_mail.groovy
				sample script.
			

				FTP/FTPs/SFTP Samples
			

				For examples on how to FTP, FTPs or SFTP reports using scripting,
				please see
				Chapter 3,
		cURL
		Integration
	
				.
			

2.1.7. Upload Reports to a Shared Location

				
					DocumentBurster™
				
				can upload the generated reports to
				a network
				shared location.
			

				Sample
			

				For an example on how to upload the burst reports to
				a shared
				location, please
				see
				the existing
				scripts/burst/samples/copy_shared_folder.groovy
				
				sample script.
			

2.1.8. Encrypt or Stamp the Output Reports

				Using scripting,
				
					DocumentBurster™
				
				can encrypt the output
				reports. This feature is commonly used to
				prevent unauthorized
				viewing,
				printing, editing, copying text from the
				document and doing
				annotations. It is also possible to ask the user
				for a password
				in
				order to view the report.
			

				Sample
			

				For an example on how to encrypt and password protect the burst
				reports, please
				see
				the existing
				scripts/burst/samples/encrypt.groovy
				sample script.
			

				
					DocumentBurster™
				
				can stamp the distributed
				reports in much the
				same way that it is
				applied a rubber
				stamp to a paper document. If
				required, it is
				possible
				to apply
				bates stamping, page numbering,
				text stamping,
				logo
				insertion
				or add headers/footers and watermarks
				to the reports.
			

				Sample
			

				For an example on how to stamp the burst reports, please
				see the
				existing
				scripts/burst/samples/overlay.groovy
				sample script.
			

2.2. Introduction to the Burst Lifecycle

			During the report processing
			
				DocumentBurster™
			
			defines a set of exit
			points
			which can be used to customize the default
			software behavior.
			The
			
				DocumentBurster™
			
			bursting lifecycle defines the
			following sequentially ordered phases
			(exit points):
		
	startBursting
				- event triggered when the burst is starting
			
	startParsePage
				- event triggered before a page text is parsed
			
	endParsePage
				- event triggered after a page text was parsed
			
	startExtractDocument
				- event triggered before a burst report is extracted
			
	endExtractDocument
				- event triggered after a burst report was just extracted
			
	startDistributeDocument
				- event triggered before a burst report is
				distributed
			
	endDistributeDocument
				- event triggered after a burst report was
				just distributed
			
	quarantineDocument
				- event triggered whenever a report failed to be distributed
				and it
				is being quarantined
			
	endBursting
				- event triggered when the burst is finishing
			

2.2.1.
				Bursting Context
			

				Bursting context
				is an object which is implicitly available for scripting
				throughout
				all the
				bursting
				lifecycle
				phases. The
				bursting context
				is available
				during scripting as a
				variable named
				ctx.
			

				Following is the information which is available
				through the
				bursting context.
			

public List<String> burstTokens;

public String inputDocumentFilePath;

public String configurationFilePath;

public Settings settings;
public Variables variables;
public Scripts scripts;

public int currentPageIndex;
public String currentPageText;
public String previousPageText;

public String token;
				
public String outputFolder;
public String backupFolder;
public String quarantineFolder;
			
public String extractFilePath;

public int numberOfPages;
				
public int numberOfExtractedFiles;
public int numberOfDistributedFiles;
public int numberOfSkippedFiles;
public int numberOfQuarantinedFiles;

public boolean skipCurrentFileDistribution = false;

public List<String> attachments = new ArrayList<String>();
public String archiveFilePath;

public Object additionalInformation;

				
	
							ctx.inputDocumentFilePath
						
						- file path to the report which is being processed.
						
							
								Lifespan
							
							-
							Available for all of the bursting lifecycle phases.
						

	
							ctx.configurationFilePath
						
						- file path to the configuration template which is being used.
						
							
								Lifespan
							
							-
							Available for the
							startExtractDocument, endExtractDocument,
								startDistributeDocument, endDistributeDocument,
								quarantineDocument
							
							and
							endBursting
							lifecycle phases/events.
						

	
							ctx.settings
						
						- contains the settings used to process
						the current report.
						Following settings fields might present interest while
						scripting
						burstFileName,
							outputFolder, backupFolder,
							quarantineFolder, sendFiles, deleteFiles,
							quarantineFiles
						
						-
						with the last three fields being of type boolean.
						
							
								Lifespan
							
							-
							Available throughout
							all the bursting lifecycle
							starting with
							the
							first
							startBursting
							phase and up to the last
							endBursting.
						

	
							ctx.variables
						
						- Map<String, Object> which contains
						both the built-in
						and the
						user defined variables.
						
							The built-in variables are
							accessible using the
							ctx.variables.get(variableName)
							syntax.
						

							For instance, the syntax
						

							ctx.variables.get("input_document_name")
						

							will return the file name of the input report.
						

							The values for the following built-in
							variables can be
							returned similarly:
						

							input_document_name, burst_token, burst_index,
								output_folder, extracted_file_path,
								now,
								now_default_date,
								now_short_date,
								now_medium_date, now_long_date,
								now_full_date,
								now_default_time, now_short_time, now_medium_time,
								now_long_time, now_full_time
								and now_quarter.
							
						

							User defined variables are populated and are available per each
							separate burst token. The syntax to access the user variables is
							ctx.variables.getUserVariables(ctx.token).get(variableName).
							
						

							For example the code,
						

							ctx.variables.getUserVariables("clyde.grew@northridgehealth.org").get("var0")
							
						

							will return the first user variable for the token
							clyde.grew@northridgehealth.org.
						

							While the code,
						

							ctx.variables.getUserVariables(ctx.token).get("var0")
							
						

							will return the first user variable for the current burst
							token.
						

							
								Lifespan
							
							-
							Beside the
							burst_token, burst_index, output_folder and
								extracted_file_path
							
							all the
							other built-in variables are available throughout
							all the
							bursting lifecycle
							starting with the first
							startBursting
							phase up to the last
							endBursting.
							

								burst_token, burst_index and output_folder
								
								are populated
								during the time the burst reports are generated and
								are available in
								startExtractDocument, endExtractDocument,
									startDistributeDocument, endDistributeDocument and
									quarantineDocument.
								
							

							

								extracted_file_path
								is populated
								after each report is extracted and is
								available in
								endExtractDocument,
									startDistributeDocument,
									endDistributeDocument and
									quarantineDocument.
								
							

							

								User variables
								are progressively populated during the time the report pages are
								being parsed and them become
								fully available for the
								startExtractDocument, endExtractDocument,
									startDistributeDocument, endDistributeDocument,
									quarantineDocument and endBursting
								
								phases.
							

						

	
							ctx.scripts
						
						- keeps track of the Groovy scripts to be executed for each of
						the
						bursting
						phases.
						
							DocumentBurster™
						
						is coming with nine
						empty
						script
						templates
						found under the
						scripts/burst
						folder.
						The existing templates are suitable to be used for most of
						the scripting
						situations. For
						example, in order to put some custom
						behavior
						when the
						bursting is finished,
						than the simplest way to do
						this is to
						write the tailored logic by editing the existing
						empty
						template
						endBursting.groovy
						script.
						
							However, there might be cases in which it will be a need to
							associate totally new Groovy scripts to be executed when some
							bursting
							events are
							happening.
						

							The syntax to specify a custom script is
							ctx.scripts.eventName = script_name.groovy
						

							For example
						

							ctx.scripts.endExtractDocument =
								my_custom_script.groovy
							
						

							will
							assign the
							my_custom_script.groovy
							to be executed after each report is extracted.
						

							Following are all the phases/events for which custom
							scripts can
							be
							associated:
							
	ctx.scripts.startBursting
	ctx.scripts.endBursting
	ctx.scripts.startParsePage
	ctx.scripts.endParsePage
	ctx.scripts.startExtractDocument
	ctx.scripts.endExtractDocument
	ctx.scripts.startDistributeDocument
	ctx.scripts.endDistributeDocument
	ctx.scripts.quarantineDistributeDocument

						

							
								Lifespan
							
							-
							Available throughout all the bursting lifecycle phases/events.
						

	
							ctx.currentPageIndex, ctx.currentPageText,
							ctx.previousPageText
						
						- the index of the current page which is being parsed and the text
						of the current
						and of the previous pages.
						
							
								Lifespan
							
							-
							Available for the
							startParsePage
							and
							endParsePage
							phases/events.
						

	
							ctx.token
						
						- the token used to extract and process the current burst report
						
							
								Lifespan
							
							-
							Available for the
							startExtractDocument,
							endExtractDocument,
							startDistributeDocument,
							endDistributeDocument
							and
							quarantineDocument
							phases/events.
						

	
							ctx.outputFolder, ctx.backupFolder, ctx.quarantineFolder
						
						- the output folder, backup folder and quarantine folder for the
						burst reports.
						
							
								Lifespan
							
							-
							Available for the
							startExtractDocument,
							endExtractDocument,
							startDistributeDocument,
							endDistributeDocument,
							quarantineDocument
							and
							endBursting
							phases/events.
						

	
							ctx.extractFilePath
						
						- the path for current file which is being extracted
						
							
								Lifespan
							
							-
							Available for the
							startExtractDocument,
							endExtractDocument,
							startDistributeDocument,
							endDistributeDocument
							and
							quarantineDocument
							phases/events.
						

	
							ctx.numberOfPages
						
						- number of pages of the report
						which is being processed.
						
							
								Lifespan
							
							-
							Available for all the bursting lifecycle phases.
						

	
							ctx.numberOfExtractedFiles
						
						- number of extracted documents/reports.
						
							
								Lifespan
							
							-
							Available during the
							endBursting
							report bursting phase.
						

	
							ctx.numberOfDistributedFiles
						
						- number of distributed documents/reports.
						
							
								Lifespan
							
							-
							Available during the
							endBursting
							report bursting phase.
						

	
							ctx.numberOfSkippedFiles
						
						- number of skipped from distribution documents/reports.
						
							
								Lifespan
							
							-
							Available during the
							endBursting
							report bursting phase.
						

	
							ctx.numberOfQuarantinedFiles
						
						- number of quarantined documents/reports.
						
							
								Lifespan
							
							-
							Available during the
							endBursting
							report bursting phase.
						

	
							ctx.skipCurrentFileDistribution
						
						- should the current file be skipped from distribution? Default
						value is
						false.
							
								Lifespan
							
							-
							Available
							during
							endExtractDocument
							report bursting phase.
						

							For an
							example
							on how to use
							skipCurrentFileDistribution,
							please see
							scripts/burst/samples/skip_current_file_distribution_if.groovy
							
							sample script.
						

	
							ctx.attachments
						
						- list with the path(s) to the attachment(s) which are about to be
						distributed
						
							
								Lifespan
							
							-
							Available for scripting during
							startDistributeDocument
							report bursting phase.
						

	
							ctx.archiveFilePath
						
						- path to the archive file which is generated and is about to be
						distributed. Available if the configuration to archive the
						attachments is
						enabled
						
							
								Lifespan
							
							-
							Available for scripting during
							startDistributeDocument, endDistributeDocument and
								quarantineDocument
							
							report bursting phases.
						

	
							ctx.additionalInformation
						
						- additional information which might be required to store and use
						while
						scripting
						
							DocumentBurster™
							.
						

			

2.3. Sample Scripts

			
				DocumentBurster™
			
			is coming with a number of sample scripts which can
			be used as a
			starting point for implementing other different
			custom requirements.
			All
			the sample scripts
			are available in
			the
			scripts/burst/samples
			folder.
		
2.3.1. zip.groovy

				By default
				
					DocumentBurster™
				
				is not archiving the output burst
				reports. By running few lines of
				script during the
				endBursting
				phase, it is possible
				to capture and zip together all the burst files
				in a single file.
			

				Edit the script
				scripts/burst/endBursting.groovy
				with
				the content found in
				scripts/burst/samples/zip.groovy
				and then burst a new report.
				Now, every time a report is burst, the
				output
				files will be archived
				together in a single zip file.
			

				Similarly, if required, the output files can be archived with
				different
				formats and algorithms such as gzip, bzip or tar. For a
				complete list and
				documentation
				of the available options please
				consult
				the help page of
				Ant Archive Tasks
			

				The following code should be self explanatory. For customizing
				the
				name of the zip output file please change the value of the
				variable
				zipFilePath
				as per the needs.
			

				

					/*
 *
 * 1. This script should be used for zipping the output burst files
 * in a single file.
 *
 * 2. The script should be executed during the endBursting report
 * bursting lifecycle phase.
 *
 * 3. Please copy and paste the content
 * of this script into the existing
 * scripts/burst/endBursting.groovy script.
 *
 * 4. The script is doing basic archiving of all the output
 * PDF files in a single zip file.
 * Running multiple times the same input report will
 * override the output zip file between the consecutive runs.
 *
 * 5. More complex archiving requirements can be achieved
 * by modifying this starting script.
 *
 */

import com.sourcekraft.documentburster.variables.Variables

//zipFilePath variable keeps the name of the zip file.
//When bursting a report burst.pdf
//the output zip file will be named burst.pdf.zip and will
//contain inside all the generated reports
def zipFilePath = ctx.outputFolder+"/"+\
ctx.variables.get(Variables.INPUT_DOCUMENT_NAME)+".zip"

def ant = new AntBuilder()

//zip together all the individual burst reports
ant.zip(destfile: zipFilePath,
 basedir: ctx.outputFolder,
 includes: "**/*.pdf, **/*.xls, **/*.xlsx")

//finally, delete the individual burst reports
ant.delete {
		fileset(dir:ctx.outputFolder,
		includes: "**/*.pdf, **/*.xls, **/*.xlsx")
		}
				

			

2.3.2. encrypt.groovy

				By default
				
					DocumentBurster™
				
				is not encrypting or password protecting
				the output burst
				reports. By
				placing few lines of
				script during the
				endExtractDocument
				phase, it is possible to encrypt and password protect
				all the output
				files.
			

				http://en.wikipedia.org/wiki/Portable_Document_Format#Security_and_signatures
			

				Edit the script
				scripts/burst/endExtractDocument.groovy
				with
				the content found in
				scripts/burst/samples/encrypt.groovy
				and then burst a new report.
				Now, every time a report is burst, the
				output files will be encrypted to have both an
				owner and an user
				password.
			

				The default user and owner passwords
				have the same value
				which is the
				value of the
				$burst_token$
				variable. For example, when bursting
				the sample report
				samples/burst.pdf
				two output files will be
				generated
				doc1.pdf
				and
				doc2.pdf
				. The password for the
				first report is
				doc1
				and for
				the second one is
				doc2
				with both passwords being generated from the
				$burst_token$
				variable.
			

				Similarly, if required, the output files can be encrypted with the
				following additional possibilities:
				
	
						Certification file
					
	
						Set the assemble permission
					
	
						Set the extraction permission
					
	
						Set the fill in form permission
					
	
						Set the modify permission
					
	
						Set the modify annots permission
					
	
						Set the print permission
					
	
						Set the print degraded permission
					
	
						The number of bits for the encryption key
					

			

				For a
				complete list and
				documentation
				of the available encrypt options
				please
				consult
				the help page of the
				PDFBox Command Line Tools
			

				The following code should be self explanatory.
				For customizing the
				passwords, following syntax
				should be used to access the value of a
				variable -
				ctx.variables.getUserVariables(ctx.token).get(variableName)
				
				.
			

				

					/*
 *
 * 1. This script should be used for achieving PDF report
 * encryption capabilities.
 *
 * 2. The script should be executed during the endExtractDocument
 * report bursting lifecycle phase.
 *
 * 3. Please copy and paste the content of this sample script
 * into the existing scripts/burst/endExtractDocument.groovy
 * script.
 *
 * 4. Following PDF encryption scenarios are possible:
 * 	
 * 4.1 - Set the owner and user PDF passwords. Default is none.
 * 4.2 - Digitally sign the report with a X.509 cert file.
 * Default is none.
 * 4.3 - Set the assemble permission. Default is true.
 * 4.4 - Set the extraction permission. Default is true.
 * 4.5 - Set the fill in form permission. Default is true.
 * 4.6 - Set the modify permission. Default is true.
 * 4.7 - Set the modify annots permission. Default is true.
 * 4.8 - Set the print permission. Default is true.
 * 4.9 - Set the print degraded permission. Default is true.
 * 4.10 - Sets the number of bits for the encryption key.
 * Default is 40.
 *
 * 5. For a full list and documentation of the various PDF encryption
 * capabilities please see
 * http://pdfbox.apache.org/commandline/
 *
 */

import com.sourcekraft.documentburster.variables.Variables

/*
 *
 * Warning:
 *
 * 1. Normally it should not be any need for you to modify
 * the value of pdfBoxClassPath.
 *
 * 2. You should only double check that the values of
 * the hard-coded jar paths/versions are still valid.
 * 	 With new releases of new software the jar paths/versions
 * might become obsolete.
 *
 * 3. If required, modify the paths/versions with care.
 * Having the pdfBoxClassPath wrong will result in the
 * following ant.exec/pdfbox call to fail.
 *
 */

def pdfBoxClassPath="lib/burst/pdfbox-1.8.2.jar"
pdfBoxClassPath+=";lib/burst/jcl-over-slf4j-1.7.5.jar;lib/burst/slf4j-api-1.7.5.jar"
pdfBoxClassPath+=";lib/burst/jempbox-1.8.2.jar"
pdfBoxClassPath+=";lib/burst/fontbox-1.8.2.jar"
pdfBoxClassPath+=";lib/burst/bcmail-jdk15-1.44.jar"
pdfBoxClassPath+=";lib/burst/bcprov-jdk15-1.44.jar"

/*
 *
 * 1. encryptOptions are the arguments which are passed for
 * PDF encryption.
 *
 * 2. By default the encryptOptions is defining the
 * owner (-O) and user (-U) passwords having the same
 * value of the $burst_token$ system variable.
 *
 * 3. You can customize for different user and owner
 * passwords which can be fetched from the values
 * of any user variable such as $var0$, $var1$, etc.
 *
 */

def burstToken = ctx.token

/*
 *
 * Following is an example to access the value of the first
 * user defined variable $var0$.
 *
 * def password = ctx.variables.getUserVariables(ctx.token).get("var0")
 *
 */

def password = burstToken

def inputFile = ctx.extractFilePath

/*
 *
 * 1. By changing the encryptOptions arguments you can
 * achieve more PDF encryption features such as applying
 * certification files, modifying the permissions on the report
 * and modifying the length of the key which is used
 * during encryption.
 *
 * 2. For a full list and documentation of the various
 * PDF encryption capabilities please see
 * http://pdfbox.apache.org/commandline/
 *
 * 3. Gotchas: Take care if you want to pass an argument
 * that contains white space since it will be split into
 * multiple arguments. This is the reason why
 * in encryptOptions all the string arguments are
 * surrounded with the \" character.
 *
 * For more details please read
 * http://groovy.codehaus.org/Executing%20External%20Processes%20From%20Groovy
 *
 */

def encryptOptions = "-O \"$password\" -U \"$password\" \"$inputFile\""

log.info("encryptOptions = $encryptOptions")

def ant = new AntBuilder()

ant.exec(outputproperty:"cmdOut",
		errorproperty: "cmdErr",
		resultproperty:"cmdExit",
		failonerror: "false",
		executable: 'java') {
			arg(line:"-cp $pdfBoxClassPath org.apache.pdfbox.Encrypt $encryptOptions")
		}

println "return code: ${ant.project.properties.cmdExit}"
println "stderr: ${ant.project.properties.cmdErr}"
println "stdout: ${ant.project.properties.cmdOut}"
				

			

2.3.3. overlay.groovy

				Using this sample script,
				
					DocumentBurster™
				
				can stamp the output burst reports.
				The script should be executed
				during the
				endExtractDocument
				report bursting lifecycle phase.
				The script is using the
				samples/Stamp.pdf
				to overlay
				the output burst reports. It is easy to customize the
				overlay
				with a different custom stamp.
			

				Edit the script
				scripts/burst/endExtractDocument.groovy
				with
				the content found in
				scripts/burst/samples/overlay.groovy
				and then burst a new report.
				Now, every time a report is burst, the
				output files will be stamped with the
				samples/Stamp.pdf
				file.
			

				The following code should be self explanatory. For customizing
				the
				overlay document please replace the existing
				samples/Stamp.pdf
				with a a different file.
			

				

					/*
*
* 1. This script should be used as a sample to overlay one document
* 	 as a stamp on top of the burst reports.
*
* 2. The script should be executed during the endExtractDocument
* report bursting lifecycle phase.
*
* 3. Please copy and paste the content of this sample script
* into the existing scripts/burst/endExtractDocument.groovy
* script.
*
* 4. For a full documentation of the PDF overlay capability
* please see
* http://pdfbox.apache.org/commandline/
*
*/

import com.sourcekraft.documentburster.variables.Variables

/*
*
* Warning:
*
* 1. Normally it should not be any need for you to modify
* the value of pdfBoxClassPath.
*
* 2. You should only double check that the values of
* the hard-coded jar paths/versions are still valid.
* With new releases of new software the jar paths/versions
* might become obsolete.
*
* 3. If required, modify the paths/versions with care.
* Having the pdfBoxClassPath wrong will result in the
* following ant.exec/pdfbox call to fail.
*
*/

def pdfBoxClassPath="lib/burst/pdfbox-1.8.2.jar"
pdfBoxClassPath+=";lib/burst/jcl-over-slf4j-1.7.5.jar;lib/burst/slf4j-api-1.7.5.jar"
pdfBoxClassPath+=";lib/burst/jempbox-1.8.2.jar"
pdfBoxClassPath+=";lib/burst/fontbox-1.8.2.jar"
pdfBoxClassPath+=";lib/burst/bcmail-jdk15-1.44.jar"
pdfBoxClassPath+=";lib/burst/bcprov-jdk15-1.44.jar"

//apply the samples/Stamp.pdf as overlay
//for the extracted report
def inputFile = ctx.extractFilePath

def overlayOptions = "samples/Stamp.pdf \"$inputFile\" \"$inputFile\""

log.info("overlayOptions = $overlayOptions")

def ant = new AntBuilder()

ant.exec(outputproperty:"cmdOut",
		errorproperty: "cmdErr",
		resultproperty:"cmdExit",
		failonerror: "false",
		executable: 'java') {
			arg(line:"-cp $pdfBoxClassPath org.apache.pdfbox.Overlay $overlayOptions")
		}

println "return code: ${ant.project.properties.cmdExit}"
println "stderr: ${ant.project.properties.cmdErr}"
println "stdout: ${ant.project.properties.cmdOut}"
				

			

2.3.4. exec_pdftk_background.groovy

				Using this sample script,
				
					DocumentBurster™
				
				can apply a PDF watermark to the background of the output
				burst
				reports.
				The script should be executed
				during the
				endExtractDocument
				report bursting lifecycle phase.
				The script is using the
				samples/Stamp.pdf
				to be applied as a background to the output burst reports.
				It is easy
				to customize the
				background operation with a different
				custom stamp.
			

				Edit the script
				scripts/burst/endExtractDocument.groovy
				with
				the content found in
				scripts/burst/samples/exec_pdftk_background.groovy
				
				and then burst a new report.
				Now, every time a report is burst, the
				output files will be stamped with the
				samples/Stamp.pdf
				file.
			

				The following code should be self explanatory. For customizing
				the
				background stamp please replace the existing
				samples/Stamp.pdf
				with a different custom file.
			

				

					/*
 *
 * 1. This script should be used:
 * 		
 * 1.1 - As a sample script to call an external executable
 * during the report bursting life cycle.
 * 1.2 - As a sample for applying a PDF watermark to the
 * background of the burst reports.
 *
 * 2. The external program to be demonstrated is pdftk
 * 	 http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
 *
 * 3. pdftk or the pdf toolkit is a cross-platform tool for
 * manipulating PDF documents. pdftk is basically a front
 * end to the iText library (compiled to Native code using GCJ),
 * capable of splitting, merging, encrypting, decrypting,
 * uncompressing, recompressing, and repairing PDFs.
 * It can also be used to manipulate watermarks, metadata,
 * and to fill PDF Forms with FDF Data (Forms Data Format)
 * or XFDF Data (XML Form Data Format).
 *
 * 4. The script should be executed during the endExtractDocument
 * report bursting lifecycle phase.
 *
 * 5. Please copy and paste the content of this sample script
 * into the existing scripts/burst/endExtractDocument.groovy
 * script.
 *
 * 6. For a full documentation of the PDF background capability
 * please see
 * http://www.pdflabs.com/docs/pdftk-man-page/#dest-op-background
 *
 */

import com.sourcekraft.documentburster.variables.Variables

def extractFilePath = ctx.extractFilePath
def stampedFilePath = ctx.extractFilePath + "_stamped.pdf"

//apply the samples/Stamp.pdf as a background
//to the extracted report
def execOptions = "\"$extractFilePath\" background samples/Stamp.pdf "
execOptions += "output \"$stampedFilePath\""

/*
 *
 * 1. Please download and install pdftk from this location
 * http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
 *
 * 2. Make sure to download the binaries which are
 * 	 specific to the target operating system.
 *
 * 3. Move the pdftk.exe and libiconv2.dll in the folder
 * where DocumentBurster was installed, next
 * to DocumentBurster.exe file.
 *
 */

def ant = new AntBuilder()

log.info("Executing pdftk.exe $execOptions")

//http://groovy.codehaus.org/Executing%20External%20Processes%20From%20Groovy
ant.exec(append: "true",
		failonerror: "true",
		output:"logs/pdftk.log",
		executable: 'pdftk.exe') {
			arg(line:"$execOptions")
		}

ant.move(file:"$stampedFilePath", tofile:"$extractFilePath")
				

			

2.3.5. print.groovy

				Using this sample script,
				
					DocumentBurster™
				
				can send the output burst reports to the printer.
				The script should
				be executed
				during the
				endExtractDocument
				report bursting lifecycle phase.
			

				Edit the script
				scripts/burst/endExtractDocument.groovy
				with
				the content found in
				scripts/burst/samples/print.groovy
				
				and then burst a new report.
				Now, every time a report is burst, the
				output files will be sent to the printer.
			

				Using the
				-silentPrint
				switch it
				is possible to print the PDF reports without prompting
				for a
				printer.
			

				The following code should be self explanatory.
			

				

					/*
 *
 * 1. This script should be used as a sample to print the burst reports.
 *
 * 2. The script should be executed during the endExtractDocument
 * report bursting lifecycle phase.
 *
 * 3. Please copy and paste the content of this sample script
 * into the existing scripts/burst/endExtractDocument.groovy
 * script.
 *
 * 4. For a full documentation of the PDF print capability
 * please see
 * http://pdfbox.apache.org/commandline/
 *
 */

import com.sourcekraft.documentburster.variables.Variables

/*
 *
 * Warning:
 *
 * 1. Normally it should not be any need for you to modify
 * the value of pdfBoxClassPath.
 *
 * 2. You should only double check that the values of
 * the hard-coded jar paths/versions are still valid.
 * 	 With new releases of new software the jar paths/versions
 * might become obsolete.
 *
 * 3. If required, modify the paths/versions with care.
 * Having the pdfBoxClassPath wrong will result in the
 * following ant.exec/pdfbox call to fail.
 *
 */

def pdfBoxClassPath="lib/burst/pdfbox-1.8.2.jar"
pdfBoxClassPath+=";lib/burst/jcl-over-slf4j-1.7.5.jar;lib/burst/slf4j-api-1.7.5.jar"
pdfBoxClassPath+=";lib/burst/jempbox-1.8.2.jar"
pdfBoxClassPath+=";lib/burst/fontbox-1.8.2.jar"
pdfBoxClassPath+=";lib/burst/bcmail-jdk15-1.44.jar"
pdfBoxClassPath+=";lib/burst/bcprov-jdk15-1.44.jar"

def extractFilePath = ctx.extractFilePath

//-silentPrint can be used to print the PDF without prompting for a printer.
def printOptions = "\"$extractFilePath\""

log.info("printOptions = $printOptions")

def ant = new AntBuilder()

ant.exec(outputproperty:"cmdOut",
		errorproperty: "cmdErr",
		resultproperty:"cmdExit",
		failonerror: "false",
		executable: 'java') {
			arg(line:"-cp $pdfBoxClassPath org.apache.pdfbox.PrintPDF $printOptions")
		}

println "return code: ${ant.project.properties.cmdExit}"
println "stderr: ${ant.project.properties.cmdErr}"
println "stdout: ${ant.project.properties.cmdOut}"
				

			

2.3.6. copy_shared_folder.groovy

				Using this sample script,
				
					DocumentBurster™
				
				can copy each individual output burst file to a shared folder
				(as
				long as the
				shared drive is mounted).
				The script should
				be executed
				during the
				endExtractDocument
				report bursting lifecycle phase.
			

				Edit the script
				scripts/burst/endExtractDocument.groovy
				with
				the content found in
				scripts/burst/samples/copy_shared_folder.groovy
				
				and then burst a new report.
				Now, every time a report is burst, the
				output files will be uploaded to the shared folder.
			

				By default the script is getting the shared location path
				from the
				content of
				$var0$
				user variable (e.g //VBOXSVR/shareit).
			

				The following code should be self explanatory.
			

				

					/*
 *
 * 1. This script should be used for copying each individual
 * output burst file to a shared folder
 * (as long as the shared drive is mounted).
 *
 * 2. The script should be executed during the endExtractDocument
 * report bursting lifecycle phase.
 *
 * 3. Please copy and paste the content of this sample script
 * into the existing scripts/burst/endExtractDocument.groovy
 * script.
 *
 * 4. Ant copy task is used to upload the reports to the
 * shared location
 * - http://ant.apache.org/manual/Tasks/copy.html
 *
 */

import com.sourcekraft.documentburster.variables.Variables

def ant = new AntBuilder()

/*
 * By default the script is getting the shared location path
 * from the content of $var0$ user variable (e.g //VBOXSVR/shareit)
 *
 */
def sharedLocationPath = ctx.variables.getUserVariables(ctx.token).get("var0")

//ant.copy(file:ctx.extractFilePath, todir:'//VBOXSVR/shareit', overwrite:true)
ant.copy(file:ctx.extractFilePath, todir:"$sharedLocationPath", overwrite:true)
				

			

2.3.7. ant_ftp.groovy

				Using this sample script,
				
					DocumentBurster™
				
				can copy all the output burst
				files at once to a remote FTP server
				location.The script should
				be executed
				during the
				endBursting
				report bursting lifecycle phase.
			

				Edit the script
				scripts/burst/endBursting.groovy
				with
				the content found in
				scripts/burst/samples/ant_ftp.groovy
				
				and then burst a new report.
				Now, every time a report is burst, the
				output files will be uploaded to the FTP server location.
			

				By default the script is fetching the values of the FTP connect
				session, such as
				user, password and host from the values of
				$var0$, $var1$ and $var2$
				user report variables. If the burst reports are configured as such,
				then there is
				nothing more
				to do, and the FTP upload will work
				without
				any modification
				to the script. Otherwise,
				the FTP script
				should be
				modified as per the
				needs.
			

				The following code should be self explanatory.
			

				

					/*
 *
 * 1. This script should be used for copying all the output burst
 * files at once to a remote FTP server location.
 *
 * 2. The script should be executed during the endBursting report
 * bursting lifecycle phase.
 *
 * 3. Please copy and paste the content of this script into the
 * existing scripts/burst/endBursting.groovy script.
 *
 * 4. The scope of this script is to copy all the *.pdf files
 * generated in the last burst session.
 * Thus, in order for this script to really upload only
 * the last generated files, it is	required that each burst
 * session will generate a new and unique burst output folder.
 *
 * 5. Ant FTP task is used to upload the reports
 * - http://ant.apache.org/manual/Tasks/ftp.html
 *
 */

import com.sourcekraft.documentburster.variables.Variables

/*
 * By default the script is getting the required FTP session information
 * from the following sources:
 *
 * userName - from the content of $var0$ user variable
 * password - from the content of $var1$ user variable
 *
 * hostName - from the content of $var2$ user variable
 *
 */
def userName = ctx.variables.getUserVariables(ctx.token).get("var0")
def password = ctx.variables.getUserVariables(ctx.token).get("var1")

def hostName = ctx.variables.getUserVariables(ctx.token).get("var2")

ant = new AntBuilder()

/*
 * Copy all the *.pdf files generated in the last burst session.
 * Thus, in order for this script to really upload only
 * the last generated files, it is	required that each burst
 * session will generate a new and unique burst output folder.
 *
 */
ant.ftp(server: "$hostName",
		userid: "$userName",
		password: "$password",
		passive: 'yes',
		verbose: 'yes',
		binary: 'yes') {
			fileset(dir:ctx.outputFolder,includes: '**/*.pdf')
		}
				

			

2.3.8. ant_scp_sftp.groovy

				Using this sample script,
				
					DocumentBurster™
				
				can copy each individual output burst file
				to a remote SCP/SFTP
				server location. The script should
				be executed
				during the
				endExtractDocument
				report bursting lifecycle phase.
			

				Edit the script
				scripts/burst/endExtractDocument.groovy
				with
				the content found in
				scripts/burst/samples/ant_scp_sftp.groovy
				
				and then burst a new report.
				Now, every time a report is burst, the
				output files will be uploaded to the SFTP/SCP server location.
			

				By default the script is fetching the values of the SCP/SFTP connect
				session, such as
				user, password, host and path from the values of
				$var0$, $var1$, $var2$ and $var3$
				user report variables. If the burst reports are configured as such,
				then there is
				nothing more
				to do, and the SFTP/SCP upload will work
				without any modification
				to the script. Otherwise,
				the SCP/SFTP script
				should be modified as per the
				needs.
			

				The following code should be self explanatory.
			

				

					/*
 *
 * 1. This script should be used for copying each individual output burst file
 * to a remote SCP/SFTP server location.
 *
 * 2. The script should be executed during the endExtractDocument
 * report bursting lifecycle phase.
 *
 * 3. Please copy and paste the content of this sample script
 * into the existing scripts/burst/endExtractDocument.groovy
 * script.
 *
 * 4. Ant SCP task is used to upload the reports
 * - http://ant.apache.org/manual/Tasks/scp.html
 *
 */

import com.sourcekraft.documentburster.variables.Variables

/*
 *		
 * By default the script is getting the required SCP/SFTP session
 * information from the following sources:
 *
 * userName - from the content of $var0$ user variable
 * password - from the content of $var1$ user variable
 *
 * hostName - from the content of $var2$ user variable
 * absolutePath - from the content of $var3$ user variable
 *
 */
def userName = ctx.variables.getUserVariables(ctx.token).get("var0")
def password = ctx.variables.getUserVariables(ctx.token).get("var1")

def hostName = ctx.variables.getUserVariables(ctx.token).get("var2")
def absolutePath = ctx.variables.getUserVariables(ctx.token).get("var3")

ant = new AntBuilder()

ant.scp(file: ctx.extractFilePath,
		todir: "$userName@$hostName:$absolutePath",
		password: "$password",
		trust:'true')
				

			

2.3.9. ant_vfs.groovy

				
					DocumentBurster™
				
				can distribute the output
				burst reports by
				using
				
					Commons Virtual File System.
				
			

				By scripting Commons VFS,
				
					DocumentBurster™
				
				can upload the reports to any of the Commons VFS supported file
				systems
				such as
				FTP, Local Files, HTTP and HTTPS, SFTP, WebDAV and
				CIFS.
			
For example, following use cases are all achievable:
	

					Using HTTP POST,
					upload the burst reports to a cloud
					storage provider
					such as
					
						Box.net
					
					or
					
						Dropbox.
					
	
					Using HTTP POST or WebDAV,
					upload the burst reports to a
					corporate portal
					such as Microsoft SharePoint, IBM WebSphere Portal,
					Oracle Portal,
					SAP NetWeaver, Tibco PortalBuilder or Samsung ACUBE
					Portal.
				
	
					Using CIFS,
					upload the burst reports to a
					CIFS server
					such as
					a Samba server, or a Windows share.
				

				This script is showing how to copy the burst reports using the
				file://
				protocol and, with minimum effort, it can
				be adapted for any of the
				above listed protocols.
			

				The script should
				be executed
				during the
				endExtractDocument
				report bursting lifecycle phase.
				Edit the script
				scripts/burst/endExtractDocument.groovy
				with
				the content found in
				scripts/burst/samples/ant_vfs.groovy
				
				and then burst a new report.
				Now, every time a report is burst, the
				output files will be copied to the configured folder path.
			

				By default the script is fetching the value of the destination
				folder
				from the value of
				$var0$
				user report variable. If the burst reports are configured as such,
				then there is
				nothing more
				to do, and the script will work
				without any
				other additional modification. Otherwise,
				the VFS script
				should be
				modified as per the
				needs.
			

				The following code should be self explanatory.
			

				

					/*
 *
 * 1. This script should be used as a sample
 * for copying/uploading each individual output burst file
 * by using the Apache Commons VFS library.
 * Commons VFS provides a single API for accessing various different
 * file systems. It presents a uniform view of the files from various
 * different sources, such as the files on local disk, on an HTTP server,
 * or inside a Zip archive.
 *
 * http://commons.apache.org/vfs/index.html
 *
 * 2. Commons VFS currently supports the following file systems:
 * http://commons.apache.org/vfs/filesystems.html
 *
 * 3. This script is demonstrating the use of the V-Copy
 * Commons VFS Ant task.
 *
 * http://commons.apache.org/vfs/anttasks.html#V-Copy
 *
 * 4. The script should be executed during the endExtractDocument
 * report bursting lifecycle phase.
 *
 * 5. Please copy and paste the content of this sample script
 * into the existing scripts/burst/endExtractDocument.groovy
 * script.
 *
 */

import com.sourcekraft.documentburster.variables.Variables

/*
 *
 * By default the script is getting the destination folder from the content
 * of $var0$ user variable
 *
 */

//e.g. destDir = "file:///C:/test"
def destDir = ctx.variables.getUserVariables(ctx.token).get("var0")

ant = new AntBuilder()

ant.sequential{
	
 taskdef(name:"vfs_copy", classname:"org.apache.commons.vfs2.tasks.CopyTask")
	
 vfs_copy(src: ctx.extractFilePath,
 destdir: "$destDir",
 overwrite:'true')
}
				

			

2.3.10. add_and_format_page_numbers.groovy

				As the name of the file suggests, this script can be used
				to add
				page numbers to the output burst reports. The script
				is numbering
				the
				pages of the output reports consecutively.
			

				Each page of the output burst reports is stamped
				with the correct
				page number and both of the following two situations
				are supported:
				
	
						Add new page numbers when the initial input report does
						not have the pages numbered
					
	
						Replace and fix the existing page numbers when
						existing
						page numbering of the input reports becomes incorrect
						after the
						report is burst
					

			

				The script should
				be executed
				during the
				endExtractDocument
				report bursting lifecycle phase.
				Edit the script
				scripts/burst/endExtractDocument.groovy
				with
				the content found in
				scripts/burst/samples/add_and_format_page_numbers.groovy
				
				and then burst a new report.
				Now, every time a report is burst, the
				pages of the output files will be properly stamped with a label
				similar with
				Page i of n
				; where
				i
				is the index of the current page and
				n
				is the total number of pages.
			

				The text, the font and the location of the page numbering label
				can
				be
				customized by doing small changes to
				the existing script. For
				example the following line of script will place the location
				of the
				numbering label at the bottom-left corner of the page.
			

				
over.setTextMatrix(30, 30);

			

				The location of the label can be changed by altering the
				above
				coordinates. Please check the inline code comments for further
				details.
			

				The following code should be self explanatory.
			

				

					/*
 *
 * 1. This script should be used for applying page numbers to
 * the output burst files.
 *
 * The script can:
 * 		
 * 1.1 - Place new numbers for pages of output burst reports
 * which are not initially numbered.
 * 1.2 - Replace and fix the numbers for pages of burst reports
 * for which the existing page numbering becomes incorrect
 * after the report is split.
 *
 * 2. The text, the font and the location of the page numbering
 * label can be customized by doing small changes to this script.
 *
 * Please check the inline code comments for further details.
 *
 * 3. The script should be executed during the endExtractDocument
 * report bursting lifecycle phase.
 *
 * 4. Please copy and paste the content of this sample script
 * into the existing scripts/burst/endExtractDocument.groovy
 * script.
 *
 */

import java.io.FileOutputStream;
import java.awt.Color;

import org.apache.commons.io.FilenameUtils;
import com.lowagie.text.Element;
import com.lowagie.text.pdf.BaseFont;
import com.lowagie.text.pdf.PdfContentByte;
import com.lowagie.text.pdf.PdfReader;
import com.lowagie.text.pdf.PdfStamper;
import com.lowagie.text.pdf.PdfGState;

/*
 * Font of the label. Default value is BaseFont.HELVETICA
 *
 * Other possible values are:
 *
 * BaseFont.COURIER
 * BaseFont.COURIER_BOLD
 * BaseFont.COURIER_BOLDOBLIQUE
 * BaseFont.COURIER_OBLIQUE
 * BaseFont.HELVETICA
 * BaseFont.HELVETICA_BOLD
 * BaseFont.HELVETICA_BOLDOBLIQUE
 * BaseFont.HELVETICA_OBLIQUE
 * BaseFont.SYMBOL
 * BaseFont.TIMES_BOLD
 * BaseFont.TIMES_BOLDITALIC
 * BaseFont.TIMES_ITALIC
 * BaseFont.TIMES_ROMAN
 * BaseFont.ZAPFDINGBATS
 *
 */
BaseFont bf = BaseFont.createFont(BaseFont.HELVETICA,
				BaseFont.WINANSI, BaseFont.EMBEDDED);

def numberedFilePath = ctx.outputFolder +
 FilenameUtils.getBaseName(ctx.extractFilePath) +
 "_numbered.pdf"

PdfReader reader = new PdfReader(ctx.extractFilePath);

//get the number of pages
int n = reader.getNumberOfPages();

PdfStamper stamp = new PdfStamper(reader,
 new FileOutputStream(numberedFilePath));

PdfContentByte over;

PdfGState gs = new PdfGState();

//100% opacity
gs.setFillOpacity(1.0f);
	
//current page index
int i = 0;

while (i < n) {

 i++;

 over = stamp.getOverContent(i);
	
 //draw an "opaque" and white rectangle
 //which is used to hide the old/wrong page numbering
 over.setGState(gs);
 over.setColorFill(Color.WHITE);

 //the default label location is at the bottom left-corner
 //of the page

 //x, y, width, height
 over.rectangle(30, 30, 60, 20);

 over.fill();

 over.beginText();
	
 //Default text color is black

 //other possible color values
 //http://download.oracle.com/javase/1.4.2/docs/api/java/awt/Color.html

 over.setColorFill(Color.BLACK);

 //the default size of the font is 12
 over.setFontAndSize(bf, 12);

 //the default label location is at the bottom left-corner
 //of the page

 //x, y
 over.setTextMatrix(30, 30);

 //label text
 over.showText("Page $i of $n");

 over.endText();
	
}

stamp.close();

def ant = new AntBuilder()

//replace the original burst report
//with the numbered one
ant.delete(file:ctx.extractFilePath)
ant.move(file:"$numberedFilePath", tofile:ctx.extractFilePath)
				

			

2.3.11. merge_with_external_files.groovy

				This script can be used to merge each of the output
				PDF burst
				files
				which is generated by
				
					DocumentBurster™
				
				with other external reports. There isn't any restriction and
				the
				external reports can be generated
				by any of the existing
				proprietary
				reporting tools like Oracle
				Hyperion or Crystal
				Reports/SAP Business
				Objects.
			

				Once the reports are merged,
				
					DocumentBurster™
				
				flow will continue as normal.
			

				By default the script
				is merging the
				external report first and the
				
					DocumentBurster™
				
				output burst report second.
				Please see the inline script comments for
				details about how to
				change the merging order.
			

				By default, for demonstration purposes, the script is merging as
				an
				external report the hard-coded
				samples/Invoices-Dec.pdf.
				With the help of user variables it is possible to
				define a
				configurable and dynamic external report to merge with.
			

				For example, the external report to merge with
				can be
				dynamically
				defined with the help of the
				$var0$
				user variable.
			

				
def externalFilePath = ctx.variables.getUserVariables(ctx.token).get("var0")

			

				The script should
				be executed
				during the
				endExtractDocument
				report bursting lifecycle phase.
				Edit the script
				scripts/burst/endExtractDocument.groovy
				with
				the content found in
				scripts/burst/samples/merge_with_external_files.groovy
				
				and then burst a new report.
				Now, every time a report is burst, the
				output files will be formed by merging the
				samples/Invoices-Dec.pdf
				with the original
				output burst files.
			

				The following code should be self explanatory.
			

				

					/*
 *
 * 1. This script can be used for merging the output PDF burst files
 * with other external reports.
 *
 * The script can:
 * 		
 * 1.1 - Merge each of the output burst files with other
 * external and configurable report.
 * 1.2 - By default the external report is merged first
 * and the burst report is appended second.
 * 1.3 - The merge order can be changed. Please see the
 * inline code comments for further details.
 * 1.4 - Once the reports are merged, DocumentBurster
 * flow will continue as normal
 *
 * 2. By default the script is merging as an external report
 * the hard-coded samples/Invoices-Dec.pdf.
 *
 * 3. By using user variables it is possible to define a
 * configurable and dynamic external report to merge with.
 * For example, the external report to merge with can be
 * dynamically defined with the help of the $var0$ user variable.
 *
 * Please check the inline code comments for further details.
 *
 * 4. The script should be executed during the endExtractDocument
 * report bursting lifecycle phase.
 *
 * 5. Please copy and paste the content of this sample script
 * into the existing scripts/burst/endExtractDocument.groovy
 * script.
 *
 */

import com.sourcekraft.documentburster.engine.pdf.Merger;
import org.apache.commons.io.FilenameUtils;

def mergedFileName = FilenameUtils.getBaseName(ctx.extractFilePath)+"_merged.pdf"

/*
 * External report to merge with. The default external report is
 * defined to be "samples/Invoices-Dec.pdf"
 *
 * The external report can be dynamically defined with the help
 * of user variables.
 *
 * For example
 *
 * def externalFilePath = ctx.variables.getUserVariables(ctx.token).get("var0")
 *
*/

def externalFilePath = "samples/Invoices-Dec.pdf"

//array with the two files to merge
def filePaths = new String[2]

//by default the external file is merged first
filePaths[0] = externalFilePath
//and the burst report is merged second
filePaths[1] = ctx.extractFilePath

def merger = new Merger(ctx.settings)

merger.doMerge(filePaths, mergedFileName)

def ant = new AntBuilder()

//replace the original burst report
//with the merged one
ant.delete(file:ctx.extractFilePath)
ant.copy(file: merger.getOutputFolder() + "/$mergedFileName",
 tofile:ctx.extractFilePath)

//clean the temporary folders/files
//this code assumes that the default program output/backup location
//is not changed
ant.delete(dir: "output/$mergedFileName",failonerror:false)
ant.delete(dir: "backup/$mergedFileName",failonerror:false)
				

			

2.3.12. ant_mail.groovy

				This script can be used for sending various ad-hoc
				emails during the
				report bursting flow. Based on your needs,
				the script can be executed
				in any of the existing
				report bursting lifecycle phases
				(e.g.
				endBursting,
				endExtractDocument
				etc).
			

				For example, this sample script can be used almost
				out of the box for
				sending an email notification when
				the bursting is successfully
				finished.
				To achieve this, please copy and paste the content of
				this
				sample script into the existing
				scripts/burst/endBursting.groovy
				script.
			

				How to customize the script
				
	
						Change the first uncommented line of the script
						(def to = "your.address@here.com")
						with the email address where
						you need the email to be sent
					
	
						Optionally, the subject and the message of the
						notification email can be also changed
					

			

				The following code should be self explanatory
			

				

					/*
 *
 * 1. This script can be used for sending various ad-hoc
 * emails during the report bursting flow.
 *
 * 2. Based on your needs, the script can be executed in any of the existing
 * report bursting lifecycle phases (e.g. endBursting, endExtractDocument etc).
 *
 * 3. For example, this script can be used almost out of the box for sending
 * an email notification when bursting is successfully finished.
 * To achieve this, please copy and paste the content of this sample script
 * into the existing scripts/burst/endBursting.groovy
 * script.
 *
 * 4. How to customize the script
 *
 * 4.1. Please change the first uncommented line of the script
 * (def to = "your.address@here.com") with the email address where
 * you need the email to be sent.
 *
 * 4.2. Optionally you can change the subject and the message of the
 * email.
 *
 * 5. Ant Mail task is used
 * - http://ant.apache.org/manual/Tasks/mail.html
 *
 */

//give a valid email address
def to = "your.address@here.com"

def host = ctx.settings.getEmailServerHost()
def port = ctx.settings.getEmailServerPort()

def user = ctx.settings.getEmailServerUserId()
def password = ctx.settings.getEmailServerUserPassword()

def from = ctx.settings.getEmailServerFrom()

//Optionally the subject can be changed
def subject = "DocumentBurster finished"

//The message can be also changed
def message = "Input file: " + ctx.inputDocumentFilePath +"\n\n"

message = message + "Number of pages: " +ctx.numberOfPages + "\n\n"

message = message + "Number of files extracted: "
message = message + ctx.numberOfExtractedFiles+"\n"

message = message + "Output folder: " + ctx.outputFolder+"\n\n"

message = message + "Number of files distributed: "
message = message + ctx.numberOfDistributedFiles+"\n\n"

message = message + "Number of files skipped from distribution: "
message = message + ctx.numberOfSkippedFiles+"\n"

message = message + "Number of files quarantined: "
message = message + ctx.numberOfQuarantinedFiles+"\n"

message = message + "Quarantine folder: " + ctx.quarantineFolder+"\n\n"

def ssl="no"

if (ctx.settings.isEmailServerUseSSL())
	ssl="yes"

def enableStartTLS="no"

if (ctx.settings.isEmailServerUseTLS())
	enableStartTLS="yes"

ant = new AntBuilder()

ant.mail(mailhost:"$host",
 mailport:"$port",
 user:"$user",
 password:"$password",
 subject:"$subject",
 from:"$from",
 tolist:"$to",
 message:"$message",
 ssl:"$ssl",
 enableStartTLS:"$enableStartTLS")
		
log.info("Notification email sent successfully to email address $to ...")
				

			

2.3.13. skip_current_file_distribution_if.groovy

				This sample script can be used to achieve complex
				conditional
				report
				delivery scenarios.
			

				
					DocumentBurster™
				
				has built-in support for
				implementing conditional report delivery and
				this is described in
				How To Implement Conditional Report Distribution?
			

				
					DocumentBurster™
					's
				
				built-in support for conditional report distribution
				requires using
				a
				<skip>true</skip>
				instruction
				(or the shorter form
				<s>true</s>)
				for the
				reports which should not be distributed.
				Based on the
				specific
				business
				requirements, the report writer engine is expected
				to
				properly fill the
				skip
				instructions and
				this will be done by using a report formula (which
				will
				decide
				if the report should be distributed or not).
			

				
					DocumentBurster™
					's
				
				built-in
				capabilities
				(skip
				instruction) can be used to
				achieve many conditional distribution
				scenarios
				while this sample script,
				scripts/burst/samples/skip_current_file_distribution_if.groovy,
				
				should be used
				for achieving the remaining and more complex
				situations
				which
				cannot be implemented using the simple
				skip
				instruction approach.
			

				This sample script can be used to achieve conditional report
				distribution in situations similar with the following
				
	The condition to skip the distribution cannot be achieved
						using a report formula (e.g. skip the delivery for files which are
						bigger than 20MB)
					
	The condition to skip the distribution is too complex and
						it might
						be more convenient to describe this in scripting than with
						a report
						formula
					
	
						For whatever reason the input report cannot be modified to
						accommodate the
						<skip>true</skip>
						instructions
					

			

				The general code structure of the script is the following
				

					
//Pre-condition helper code
						
//The condition based on which the distribution will be skipped
if (skip-condition){
							
 //Skip the delivery of the current report
 ctx.skipCurrentFileDistribution = true
						
 //Other code which might be required
							
}
					
				

			

				
	ctx.skipCurrentFileDistribution = true
						is the line of code which
						is enabling
						
							DocumentBurster™
						
						to skip the distribution
						for the current report
					
	skip-condition
						is the condition based on which the report will be skipped for
						distribution (will be different for each business scenario)
					

			

				The sample
				scripts/burst/samples/skip_current_file_distribution_if.groovy
				
				has the
				same code structure and is skipping the distribution
				for
				reports which are bigger than the configurable
				20MB file size
				threshold.
				

					
//configurable FILE_SIZE_THRESHOLD
final def FILE_SIZE_THRESHOLD = 20
			
				

				The script must be executed during the
				endExtractDocument
				report bursting lifecycle phase. Please copy and paste the
				content of
				this sample script into the existing
				scripts/burst/endExtractDocument.groovy
				script.
			

				

					/*
 *
 * 1. This script can be used to implement more advanced conditional
 * report delivery scenarios.
 *
 * 2. While the current script is a sample on how to skip the
 * report distribution for reports > 20 MB (this is a configurable
 * threshold since MS Exchange will bounce back for reports
 * which are so big), similarly it is possible to skip the distribution
 * based on any custom business situation which your organization
 * might have.
 *
 * 3. "ctx.skipCurrentFileDistribution = true" is the line of code which
 * is enabling DocumentBurster to skip the distribution
 * for the current report.
 *
 * 4. The script must be executed during the endExtractDocument
 * report bursting lifecycle phase.
 *
 * 5. Please copy and paste the content of this sample script
 * into the existing scripts/burst/endExtractDocument.groovy
 * script.
 *
 * 6. How to customize the script to achieve other conditional
 * report delivery scenarios
 *		
 * 6.1. Replace the "if (currentFileSize >= FILE_SIZE_THRESHOLD)"
 * with any custom condition which is appropriate for your
 * scenario.
 *
 * 6.2. Beside the "ctx.skipCurrentFileDistribution = true"
 * the rest of the code which is found in the IF block is just copying
 * to quarantine the offending report (>20MB threshold).
 *		
 * Optionally you might want to change the code from within the IF block
 * with something else which is better fitting your needs.
 *
 */

import com.sourcekraft.documentburster.utils.Utils

import org.apache.commons.io.FileUtils
import org.apache.commons.io.FilenameUtils

//configurable FILE_SIZE_THRESHOLD
final def FILE_SIZE_THRESHOLD = 20

def currentFile = new File(ctx.extractFilePath)

//get the size (in MEGABYTE) of the current report
def currentFileSize = Utils.getFileSize(currentFile.length(),
 Utils.FileSizeUnit.MEGABYTE);

//if the report is bigger than the defined threshold
if (currentFileSize > FILE_SIZE_THRESHOLD) {
		
 //skip the distribution
 ctx.skipCurrentFileDistribution = true
	
 //start - copy the report to quarantine
 File quarantineDir = new File(ctx.quarantineFolder);
		
 if (!quarantineDir.exists())
 FileUtils.forceMkdir(quarantineDir);
		
 File quarantineFile = new File(ctx.quarantineFolder + "/" +
 FilenameUtils.getName(ctx.extractFilePath));

 if (!quarantineFile.exists())
 FileUtils.copyFile(new File(ctx.extractFilePath), quarantineFile);
		
 ctx.numberOfQuarantinedFiles++;
 //end - copy the report to quarantine
		
 log.warn("The following file was skipped for distribution since its size - "+
 currentFileSize + " MB - is bigger than the " +
 FILE_SIZE_THRESHOLD + " MB file size threshold")

 log.warn("Associated burst token for the skipped file: " +
 ctx.token +", file path: '") + ctx.extractFilePath + "'"

 log.warn("The file was quarantined")
		
}
				

			

2.3.14. batch_pdf_print.groovy

				Silent PDF batch printing
			

				Using this sample script
				
					DocumentBurster™
				
				can silently print the output burst reports.
			

				Foxit Reader
			

				This script is using
				Foxit Reader
				in order to print the reports.
				Foxit Reader
				should be installed on your machine in order for
				this script to work
				properly.
			

				http://www.foxitsoftware.com/
			

				Foxit Reader
				- Command Line Switches
				
	
						Print a PDF file silently to the default printer :
						"Foxit Reader.exe" /p <PDF Path>
	
						Print a PDF file silently to an alternative printer:
						"Foxit Reader.exe" /t <PDF Path> [Printer]
						

			

				The script should
				be executed
				during the
				endExtractDocument
				report bursting lifecycle phase. Edit the script
				scripts/burst/endExtractDocument.groovy
				with
				the content found in
				scripts/burst/samples/batch_pdf_print.groovy
				
				and then burst a new report.
				Now, every time a report is burst, the
				output files will be sent to the default printer.
			

				The following code should be self explanatory.
			

				

					/*
 *
 * 1. This script should be used as a sample to silently batch
 * print the burst (PDF) reports.
 *
 * 2. The script should be executed during the endExtractDocument
 * report bursting lifecycle phase.
 *
 * 3. Please copy and paste the content of this sample script
 * into the existing scripts/burst/endExtractDocument.groovy
 * script.
 *
 * 4. This script is using Foxit Reader in order to print the reports.
 * Foxit Reader should be installed on your machine in order for
 * this script to work properly.
 *
 *	 - http://www.foxitsoftware.com/
 *
 * 5. Foxit Reader - Command Line Switches
 *
 * 5.1 Print a PDF file silently to the default printer:
 * 	
 * "Foxit Reader.exe" /p <PDF Path>
 *
 * 5.2 Print a PDF file silently to an alternative printer:
 *
 * "Foxit Reader.exe" /t <PDF Path> [Printer]	
 *
 */
import java.io.File

def extractFilePath = (new File(ctx.extractFilePath)).getCanonicalPath()

def execOptions = "/p \"$extractFilePath\""

def ant = new AntBuilder()

log.info("Executing 'Foxit Reader.exe $execOptions'")

//If required, change the path to point to your installation of Foxit Reader
ant.exec(append: "true",
		failonerror: "true",
		output:"logs/foxit.log",
		executable: "C:/Program Files (x86)/Foxit Software/Foxit Reader/Foxit Reader.exe") {
			arg(line:"$execOptions")
		}
				

			

2.3.15. fetch_distribution_details_from_database.groovy

				Fetch Bursting and Distribution Details from
					Database
				
			

				Using this sample script,
				
					DocumentBurster™
				
				can fetch the bursting and distribution details from an
				external
				database. Once fetched, the details are populated into the
				var0, var1, etc.
				user variables in order to be further used by
				
					DocumentBurster™
					.
				
			

				This sample script is demonstrating how to connect to an HSQLDB
				database, however
				you can modify the connection details to point to
				an:
				
	
						Oracle database
					
	
						Microsoft SQL Server, Microsoft Access or Microsoft
						FoxPro database
					
	
						IBM DB2 or IBM AS/400 database
					
	
						PostgreSQL, MySQL, SQLite, Apache Derby or
						FireBird
						database
					
	
						Teradata database
					

			
Important

					In order for this script to work it is mandatory to copy the
					correct
					JDBC driver jar file (corresponding to your database) into the
					existing
					lib/burst
					folder.
				

Important

					In the following script it is required to change the SQL query
					to meet
					your
					own need.
					In order to avoid sending confidential
					information to
					the
					wrong
					employee/customer check carefully that your
					customized SQL
					query is
					correct and it is
					properly returning the
					unique
					details for
					the appropriate employee or
					customer.
				

				The following code should be self explanatory
			

				

					/*
 *
 * 1. This script should be used as a sample to fetch the
 * bursting/distribution meta-data details from an external database.
 *
 * 2. The script can be executed (depending on the need) in either
 * startExtractDocument, endExtractDocument or startDistributeDocument
 * report bursting life-cycle phases.
 *
 * 3. Please copy and paste (if this is what you need) the content
 * of this sample script into the existing
 * scripts/burst/startExtractDocument.groovy script.
 *
 * 4. This sample script is connecting to an HSQLDB database, however
 * you can modify the connection details to point to an
 *
 * Oracle,
 * Microsoft Access,
 * Microsoft SQL Server,
 * Microsoft FoxPro,
 * IBM DB2,
 * IBM AS/400,
 * MySQL,
 * PostgreSQL,
 * Teradata,
 * SQLite,
 * Apache Derby or
 * FireBird SQL database
 *
 * 5. In order for this script to work it is mandatory to copy the correct
 * JDBC driver jar (corresponding to your database)
 * file into the existing lib/burst folder
 *
 * 6. Groovy SQL resources
 *
 * 6.1 Groovy SQL - http://groovy.codehaus.org/Tutorial%206%20-%20Groovy%20SQL
 * 6.2 Practically Groovy: JDBC programming with Groovy -
 * http://www.ibm.com/developerworks/java/library/j-pg01115/index.html
 *
 */

import groovy.sql.Sql

//HSQLDB sample

//Replace localhost with your host
//Replace xdb with your own database name
//Replace sa and '' with your own database login details

def sql = Sql.newInstance('jdbc:hsqldb:hsql://localhost/xdb',
 'sa', '','org.hsqldb.jdbcDriver')

//Oracle sample

//Replace localhost with your host
//Replace username and password with your database login details
//Change to your own database instance

//def sql = Sql.newInstance('jdbc:oracle:thin:@localhost:1521:orcl',
// 'username', 'password',
// 'oracle.jdbc.pool.OracleDataSource')
					
//The burst token is used as a key to identify the details
//of the appropriate employee or customer
def token = ctx.token

//Change the SQL to your own need

//Double check your customized SQL is correct and is
//properly returning the unique details for the appropriate
//employee/customer (otherwise the risk is to send
//confidential information to the wrong employee or customer)

def employeeRow = sql.firstRow('SELECT employee_id, email_address,' +
 'first_name, last_name FROM employees WHERE employee_id = ?',
 [token])

def emailAddress = employeeRow.email_address

def firstName = employeeRow.first_name
def lastName = employeeRow.last_name

println "Employee: employee_id = ${employeeRow.employee_id} and " +
 "email_address = ${emailAddress} and first_name = ${firstName} " +
 "and last_name = ${lastName}"

//Populate the fetched information into var0, var1, etc user variables.
ctx.variables.setUserVariable(String.valueOf("${token}"),"var0",
 String.valueOf("${emailAddress}"))

ctx.variables.setUserVariable(String.valueOf("${token}"),"var1",
 String.valueOf("${firstName}"))

ctx.variables.setUserVariable(String.valueOf("${token}"),"var2",
 String.valueOf("${lastName}"))
				

			

2.3.16. fetch_distribution_details_from_csv_file.groovy

				Fetch Bursting and Distribution Details from
					an External
					(CSV) File
				
			

				Using this sample script,
				
					DocumentBurster™
				
				can fetch the
				bursting and distribution meta-data details from an
				external (CSV) file. Once fetched, the details are populated into
				the
				var0, var1, etc.
				user variables in order to be further used by
				
					DocumentBurster™
					.
				
				This script is reading the information
				from a CSV
				file, however
				you can
				modify the script to parse and read other plain
				text files
				which have
				a more
				custom format.
			

				Following is a sample with how this script is expecting
				the CSV
				file
			

				
					employee.csv
				
				>
			

				

			

				The first column from the file is the employee identifier. The
				script is using
				this column to find the row which contains the
				details for each employee. Following
				is the code which is doing this
			

				

					/*The burst token is used as a key to identify the
					details of the	appropriate employee or customer*/
					if (employeeRow[0]== token)
					{

					 ...

					}
				

			

				If you have a file with a different structure then the script
				should
				be modified accordingly.
			
Important

					Most probably you will modify this script
					accordingly to your
					own custom file format.
					In order to avoid sending confidential
					information to the wrong employee/
					customer check carefully that
					your customized code is correct and it is
					properly returning the
					unique details for the appropriate employee
					or customer.
				

				The following code should be self explanatory
			

				

					/*
 *
 * 1. This script should be used as a sample to fetch the
 * bursting/distribution meta-data details from an external (CSV) file.
 *
 * 2. The script can be executed (depending on the need) in either
 * startExtractDocument, endExtractDocument or startDistributeDocument
 * report bursting life-cycle phases.
 *
 * 3. Please copy and paste (if this is what you need) the content
 * of this sample script into the existing
 * scripts/burst/startExtractDocument.groovy script.
 *
 * 4. This sample script is reading the information from a CSV file, however
 * you can modify the script to parse and read other plain text files
 * (which have your own custom format).
 *
 * 5. Following is a sample with how this script is expecting the CSV file
 *
 * employee_id,email_address,first_name,last_name
 * 1,email1@address1.com,firstName1,lastName1
 * 2,email2@address2.com,firstName2,lastName2
 * 3,email3@address3.com,firstName3,lastName3
 * 4,email4@address4.com,firstName4,lastName4
 *
 * 6. If you have a file with a different structure then the script should
 * be modified accordingly.
 *
 */

//The burst token is used as a key to identify the details
//of the appropriate employee or customer
def token = ctx.token

//Load and parse the CSV file - Change with the path of your own CSV file
def employees = new File("src/test/resources/input/unit/other/" +
 "employees.csv").readLines()*.split(",")

println "Processed ${employees.size()} Lines"

def employeeId, emailAddress, firstName, lastName

for (employeeRow in employees) {

 //The burst token is used as a key to identify the details
 //of the appropriate employee or customer
 if (employeeRow[0] == token)
 {
 employeeId = employeeRow[0]
 emailAddress = employeeRow[1]
 firstName = employeeRow[2]
 lastName = employeeRow[3]
 }
}

println "Employee: employee_id = ${employeeId} and" +
 " email_address = ${emailAddress} and" +
 " first_name = ${firstName} and" +
 " last_name = ${lastName}"

//Populate the fetched information into var0, var1, etc.
ctx.variables.setUserVariable(String.valueOf("${token}"),"var0",
 String.valueOf("${emailAddress}"))

ctx.variables.setUserVariable(String.valueOf("${token}"),"var1",
 String.valueOf("${firstName}"))

ctx.variables.setUserVariable(String.valueOf("${token}"),"var2",
 String.valueOf("${lastName}"))
				

			

2.4. Further Reading

	
					Groovy documentation
				
				- general Groovy docs which will
				help for writing better
				
					DocumentBurster™
				
				scripts.
			
	
					Ant documentation
				
				- In case there is a need to
				copy, mkdir, move, delete
				files and
				folders.
				Ant
				can also be used for sending emails from within scripts
				or to FTP
				and
				SCP files using SSH.
			
	
					AntBuilder documentation
				
				- Using Ant from Groovy.
			
	
					Commons VFS documentation
				
				- WebDAV scripting, in case there is a need to upload
				reports to
				Microsoft SharePoint or to other portal product.
				Commons VFS can also
				be scripted to copy reports to a network shared drive
				or to upload
				the reports to FTP and SFTP servers.
			

	PrevChapter 1.
		Overview
	
	Top of page
	Front page
	NextChapter 3.
		cURL
		Integration
	

				
