
				

				Prev
	

Chapter 3.
		cURL
		Integration
	

	3.1.
			
				DocumentBurster
			
			/
			cURL
			sample scripts
		
		3.1.1. curl_ftp.groovy
	3.1.2. curl_sftp.groovy

		The current chapter is related with both of the previously
		presented
		topics
	

		
	Chapter 2, Using Scripts to Achieve More
	
					Chapter 3. Distributing Reports
				

					from
					
						DocumentBurster™
						User Guide
					
				

	

		This chapter is related with the previous two topics in the sense that
		it shows
		how to use
		
			DocumentBurster™
		
		scripting as a means of achieving very specific
		(non-standard)
		report
		distribution requirements.
	

		
			DocumentBurster™
		
		closely integrates with
		
			cURL,
		
		a Swiss-army knife for doing data transfer. Through
		cURL,
		
			DocumentBurster™
		
		can distribute
		reports
		via HTTP or FTP with or without authentication,
		it works over
		SSL, and it
		works without interaction. Actually
		cURL
		(and
		thus
		
			DocumentBurster™
		
)
		supports distributing files and data to a various range of common
		Internet
		protocols, currently including
		HTTP, HTTPS, FTP, FTPS, SCP,
		SFTP, TFTP, LDAP, LDAPS, DICT, TELNET, FILE,
		IMAP, POP3, SMTP and RTSP.
	

		cURL -
		http://curl.haxx.se/
	

		Cross platform
	

		cURL
		is portable and works on many platforms, including
		Windows, Linux, Mac
		OS X, MS-DOS and more.
	

		On Windows,
		
			DocumentBurster™
		
		package distribution is bundling together
		a recent version of
		cURL.
		So,
		if your organization is running
		
			DocumentBurster™
		
		under Windows,
		there is nothing more to download or install in regards
		with
		cURL.
	

		For other UNIX like systems, such as Linux and Mac OS X, the
		appropriate
		cURL
		binaries
		distribution should be properly downloaded
		and
		installed.
		In
		addition, the
		cURL
		groovy scripts which are bundled
		together with
		
			DocumentBurster™
		
		are written for Windows usage and should support small adjustments to
		be made
		ready for usage under Linux/UNIX.
	

		
			Command line
			cURL
			examples
		
	

		cURL
		is a tool for getting or sending files using URL syntax. The
		URL syntax
		is protocol-dependent. Along with the URL for
		the required
		protocol,
		cURL
		can take some additional options in the
		command line.
	

		For complete
		cURL
		documentation you can follow
		
	cURL Manual
	cURL Man Page
	cURL Frequently Asked Questions

	

		Following are some sample
		cURL
		invocations to upload a file to
		a
		remote server (from
		cURL
		manual)
	

		1. FTP / FTPS / SFTP / SCP
	
Upload data from a specified file, login with user and password
	

		curl -T uploadfile -u user:passwd
			ftp://ftp.upload.com/myfile
		
	
Upload a local file to the remote site, and use the local file
		name remote
		too
	

		curl -T uploadfile -u user:passwd ftp://ftp.upload.com/
		
	

		cURL
		also supports ftp upload through a proxy, but only if the
		proxy is
		configured to allow that kind of tunneling. If it does, you
		can run
		cURL
		in
		a fashion similar to
	

		curl --proxytunnel -x proxy:port -T localfile
			ftp.upload.com
		
	

		--ftp-create-dirs
	

		When integrated with
		
			DocumentBurster™
			,
		
		following
		cURL
		option will
		be of interest
	

		--ftp-create-dirs
		- (FTP/SFTP) When an FTP or SFTP URL/operation uses a path that
		doesn't currently exist on the server, the standard behavior of
		cURL
		is to fail. Using this option,
		cURL
		will instead attempt to create
		missing directories.
	

		2. HTTP
	
Upload data from a specified file

		curl -T uploadfile http://www.upload.com/myfile
		
	
Note that the http server must have been configured to accept PUT
		before
		this can be done successfully.
	

		
			Debugging and tracing
			cURL
			- VERBOSE / DEBUG
		
	

		If
		cURL
		fails where it isn't supposed to, if the servers don't
		let you in,
		if
		you can't understand the responses: use the -v flag to
		get verbose
		fetching.
		cURL
		will output lots of info and what it sends
		and receives
		in
		order to let
		the user see all client-server interaction
		(but it won't show
		you the
		actual data).
	

		curl -v ftp://ftp.upload.com/
		
	

		To get even more details and information on what
		cURL
		does, try
		using the
		--trace or --trace-ascii options with a given file
		name to
		log to, like
		this
	

		curl --trace trace.txt www.haxx.se
		
	
3.1.
			
				DocumentBurster™
			
			/
			cURL
			sample scripts
		

			While it is great to know that so many protocols are supported,
			
				DocumentBurster™
			
			is coming with sample scripts to do
			cURL
			report distribution through
			the
			most
			commonly used protocols such as
			FTP,
			SFTP and FILE. Any
			other
			cURL
			supported protocol should be achievable by doing
			little changes
			to
			the
			scripts which are provided in the default
			
				DocumentBurster™
			
			package distribution.
		
3.1.1. curl_ftp.groovy

				curl_ftp.groovy
				script is an alternative to the
				FTP Upload
				GUI capability which was introduced in
				
					DocumentBurster™
					User Guide.
				
				While through the GUI
				it is possible to achieve common FTP
				report
				distribution use cases, using
				this FTP script is recommended
				for
				more
				advanced FTP scenarios which require the full
				cURL
				FTP
				capabilities. For
				example, using this script it is possible to
				instruct
				
					DocumentBurster™
				
				to automatically create a custom hierarchy of directories on the FTP
				server, before uploading
				the reports.
			

				Edit the script
				scripts/burst/endExtractDocument.groovy
				with
				the content found in
				scripts/burst/samples/curl_ftp.groovy.
				By default the script is fetching the values for the FTP connection
				,
				such as
				user, password, host and path from the values of
				$var0$, $var1$, $var2$ and $var3$
				user report variables. If the burst reports are configured as such,
				then there is
				nothing more
				to do, and the FTP upload will work
				without
				any modification
				to the script. Otherwise,
				the FTP script
				should be
				modified as per the
				needs.
			

				While the script might look long, there are actually only few
				simple lines of active code - most of the
				content of the script are
				the
				comments which are appropriately describing the scope of each
				section
				of the script.
			

				

					/*
 *
 * 1. This script should be used:
 *
 * 1.1 - As a script to upload reports by FTP using cURL.
 * 1.2 - As a sample and starting script to invoke cURL during the
 * report bursting life cycle.
 *
 * 2. curl is a tool to transfer data from or to a server, using one of the
 * supported protocols (DICT, FILE, FTP, FTPS, GOPHER, HTTP, HTTPS, IMAP,
 * IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP, SFTP, SMTP, SMTPS,
 * TELNET and TFTP).
 *
 * The command is designed to work without user interaction.
 *
 * 3. curl offers a busload of useful tricks like proxy support,
 * user authentication, FTP upload, HTTP post, SSL connections, cookies,
 * file transfer resume and more.
 *
 * 4. The URL syntax is protocol-dependent. You'll find a detailed description
 * in RFC 3986.
 *
 * 5. The script should be executed during the endExtractDocument
 * report bursting lifecycle phase.
 *
 * 6. Please copy and paste the content of this sample script
 * into the existing scripts/burst/endExtractDocument.groovy
 * script.
 *
 * 7. For a full documentation of the cURL and FTP please see
 *
 * 7.1. http://curl.haxx.se/docs/manual.html
 * 7.2. http://curl.haxx.se/docs/manpage.html
 *
 */

import com.sourcekraft.documentburster.variables.Variables

/*
 *
 * The file to be uploaded is the file which has
 * just been burst.
 *
 */
def uploadFilePath = ctx.extractFilePath

/*
 * By default the script is extracting the required FTP
 * session information from the following sources:
 *
 * userName - from the content of $var0$ user variable
 * password - from the content of $var1$ user variable
 *
 * hostName - from the content of $var2$ user variable
 * absolutePath - from the content of $var3$ user variable
 *
 */
def userName = ctx.variables.getUserVariables(ctx.token).get("var0")
def password = ctx.variables.getUserVariables(ctx.token).get("var1")

def hostName = ctx.variables.getUserVariables(ctx.token).get("var2")
def absolutePath = ctx.variables.getUserVariables(ctx.token).get("var3")

/*
 *
 * $execOptions is the command line to be sent for execution to cURL
 * - see http://curl.haxx.se/docs/manpage.html
 *
 * --ftp-create-dirs -
 *
 * (FTP/SFTP) When an FTP or SFTP URL/operation uses a path that
 * doesn't currently exist on the server, the standard behavior
 * of curl is to fail.
 * Using this option, curl will instead attempt to create the
 * missing directories.
 *
 * -T, --upload-file <file>
 *
 * This transfers the specified local file to the remote URL.
 * If there is no file part in the specified URL, Curl will
 * append the local file name.
 * NOTE that you must use a trailing / on the last directory
 * to really prove to Curl that there is no file name or curl
 * will think that your last directory name is	the remote file
 * name to use. That will most likely cause the upload
 * operation to fail.
 * If this is used on a HTTP(S) server, the PUT command
 * will be used.
 *
 * -u, --user <user:password>
 *
 * Specify the user name and password to use for server authentication.
 *
 * --trace <file>
 *
 * Enables a full trace dump of all incoming and outgoing data,
 * including descriptive information, to the given output file.
 * Use "-" as filename to have the output sent to stdout.
 * This option overrides previous uses of -v, --verbose or --trace-ascii.
 * If this option is used several times, the last one will be used.
 *
 * --trace-ascii <file>
 *
 * Enables a full trace dump of all incoming and outgoing data,
 * including descriptive information, to the given output file.
 * Use "-" as filename to have the output sent to stdout.
 * This is very similar to --trace, but leaves out the hex part
 * and only shows the ASCII part of the dump. It makes smaller
 * output that might be easier to read for untrained humans.
 * This option overrides previous uses of -v, --verbose or --trace.
 * If this option is used several times, the last one will be used.
 *
 * --trace-time
 *
 * Prepends a time stamp to each trace or verbose line that curl displays.
 * Added in curl 7.14.0)
 *
 * -v, --verbose
 *
 * Makes the fetching more verbose/talkative.
 * Mostly useful for debugging. A line starting with '>'
 * means "header data"	sent by curl, '<' means "header data"
 * received by curl that is hidden in normal cases, and a
 * line starting with '*' means additional info provided
 * by curl.
 * Note that if you only want HTTP headers in the output,
 * -i, --include might be the option you're looking for.
 * If you think this option still doesn't give you enough details,
 * consider using --trace or --trace-ascii instead.
 * This option overrides previous uses of --trace-ascii or --trace.
 * Use -s, --silent to make curl quiet.
 *
 * FTPS
 *
 * It is just like for FTP, but you may also want to specify and use
 * SSL-specific options for certificates etc.
 * Note that using FTPS:// as prefix is the "implicit" way as
 * described in the standards while the recommended "explicit" way is
 * done by using FTP:// and the --ftp-ssl option.
 *
 * SFTP / SCP
 *
 * This is similar to FTP, but you can specify a private key to use
 * instead of a password.
 * Note that the private key may itself be protected by a password that is
 * unrelated to the login password of the remote system.
 * If you provide a private key file you must also provide a public key file.
 *
 * For more details see:
 *
 * 1. http://curl.haxx.se/docs/manual.html
 * 2. http://curl.haxx.se/docs/manpage.html
 *
 */
def execOptions = "--ftp-create-dirs"
execOptions += " -T \"$uploadFilePath\""
execOptions += " -u $userName:$password"
execOptions += " ftp://$hostName/$absolutePath"

def ant = new AntBuilder()

/*
 * The command executed by curl will be logged in
 * the logs/DocumentBurster.log file
 */
log.info("Executing command: curl.exe $execOptions")

/*
 *
 * 1. http://groovy.codehaus.org/Executing%20External%20Processes%20From%20Groovy
 * 2. cURL is printing its logging operations to the logs/cURL.log file
 *
 */
ant.exec(
		append: "true",
		failonerror: "true",
		output:"logs/cURL.log",
		executable: 'curl/win/curl.exe') {
			arg(line:"$execOptions")
		}
				

			

3.1.2. curl_sftp.groovy

				curl_sftp.groovy
				script can be used to upload the burst reports through
				Secure File
				Transfer Protocol or Secure FTP.
			

				With minimum modifications to
				$execOptions,
				the script can be adapted to use
				other protocols such as FTPs or
				SCP.
				You can check
				cURL
					Manual -
					cURL
					usage explained
				
				for more details.
			

				Edit the script
				scripts/burst/endExtractDocument.groovy
				with
				the content found in
				scripts/burst/samples/curl_sftp.groovy.
				By default the script is fetching the values for the SFTP connection
				, such as
				user, password, host and path from the values of
				$var0$, $var1$, $var2$ and $var3$
				user report variables. If the burst reports are configured as such,
				then there
				is nothing more to do, and SFTP uploading will work
				without
				any
				additional modification to the script. Otherwise, this
				script
				should be modified as per the needs.
			

				While the script might look long, there are actually only few
				simple lines of active code - most of the
				content of the script are
				the
				comments which are appropriately describing the scope of each
				section
				of the script.
			

				

					/*
 *
 * 1. This script should be used:
 *
 * 1.1 - As a script to upload reports by SFTP using cURL.
 * 1.2 - As a sample and starting script to invoke cURL during the
 * report bursting life cycle.
 *
 * 2. curl is a tool to transfer data from or to a server, using one of the
 * supported protocols (DICT, FILE, FTP, FTPS, GOPHER, HTTP, HTTPS, IMAP,
 * IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP, SFTP, SMTP, SMTPS,
 * TELNET and TFTP).
 *
 * The command is designed to work without user interaction.
 *
 * 3. curl offers a busload of useful tricks like proxy support,
 * user authentication, FTP upload, HTTP post, SSL connections, cookies,
 * file transfer resume and more.
 *
 * 4. The URL syntax is protocol-dependent. You'll find a detailed description
 * in RFC 3986.
 *
 * 5. The script should be executed during the endExtractDocument
 * report bursting lifecycle phase.
 *
 * 6. Please copy and paste the content of this sample script
 * into the existing scripts/burst/endExtractDocument.groovy
 * script.
 *
 * 7. For a full documentation of the cURL and FTP please see
 *
 * 7.1. http://curl.haxx.se/docs/manual.html
 * 7.2. http://curl.haxx.se/docs/manpage.html
 *
 */

import com.sourcekraft.documentburster.variables.Variables

/*
 *
 * The file to be uploaded is the file which has
 * just been burst.
 *
 */
def uploadFilePath = ctx.extractFilePath

/*
 * By default the script is extracting the required SFTP
 * session information from the following sources:
 *
 * userName - from the content of $var0$ user variable
 * password - from the content of $var1$ user variable
 *
 * hostName - from the content of $var2$ user variable
 * absolutePath - from the content of $var3$ user variable
 *
 */
def userName = ctx.variables.getUserVariables(ctx.token).get("var0")
def password = ctx.variables.getUserVariables(ctx.token).get("var1")

def hostName = ctx.variables.getUserVariables(ctx.token).get("var2")
def absolutePath = ctx.variables.getUserVariables(ctx.token).get("var3")

/*
 *
 * $execOptions is the command line to be sent for execution to cURL
 * - see http://curl.haxx.se/docs/manpage.html
 *
 * --ftp-create-dirs -
 *
 * (FTP/SFTP) When an FTP or SFTP URL/operation uses a path that
 * doesn't currently exist on the server, the standard behavior
 * of curl is to fail.
 * Using this option, curl will instead attempt to create
 * missing directories.
 *
 * -T, --upload-file <file>
 *
 * This transfers the specified local file to the remote URL.
 * If there is no file part in the specified URL, Curl will
 * append the local file name.
 * NOTE that you must use a trailing / on the last directory
 * to really prove to Curl that there is no file name or curl
 * will think that your last directory name is	the remote file
 * name to use. That will most likely cause the upload
 * operation to fail.
 * If this is used on a HTTP(S) server, the PUT command
 * will be used.
 *
 * -u, --user <user:password>
 *
 * Specify the user name and password to use for server authentication.
 *
 * --trace <file>
 *
 * Enables a full trace dump of all incoming and outgoing data,
 * including descriptive information, to the given output file.
 * Use "-" as filename to have the output sent to stdout.
 * This option overrides previous uses of -v, --verbose or --trace-ascii.
 * If this option is used several times, the last one will be used.
 *
 * --trace-ascii <file>
 *
 * Enables a full trace dump of all incoming and outgoing data,
 * including descriptive information, to the given output file.
 * Use "-" as filename to have the output sent to stdout.
 * This is very similar to --trace, but leaves out the hex part
 * and only shows the ASCII part of the dump. It makes smaller
 * output that might be easier to read for untrained humans.
 * This option overrides previous uses of -v, --verbose or --trace.
 * If this option is used several times, the last one will be used.
 *
 * --trace-time
 *
 * Prepends a time stamp to each trace or verbose line that curl
 * displays.
 * Added in curl 7.14.0)
 *
 * -v, --verbose
 *
 * Makes the fetching more verbose/talkative.
 * Mostly useful for debugging. A line starting with '>'
 * means "header data"	sent by curl, '<' means "header data"
 * received by curl that is hidden in normal cases, and a
 * line starting with '*' means additional info provided by curl.
 * Note that if you only want HTTP headers in the output,
 * -i, --include might be the option you're looking for.
 * If you think this option still doesn't give you enough details,
 * consider using --trace or --trace-ascii instead.
 * This option overrides previous uses of --trace-ascii or --trace.
 * Use -s, --silent to make curl quiet.
 *
 * FTPS
 *
 * It is just like for FTP, but you may also want to specify and use
 * SSL-specific options for certificates etc.
 * Note that using FTPS:// as prefix is the "implicit" way as
 * described in the standards while the recommended "explicit" way is
 * done by using FTP:// and the --ftp-ssl option.
 *
 * SFTP / SCP
 *
 * This is similar to FTP, but you can specify a private key to use
 * instead of a password.
 * Note that the private key may itself be protected by a password that is
 * unrelated to the login password of the remote system.
 * If you provide a private key file you must also provide
 * a public key file.
 *
 * For more details see:
 *
 * 1. http://curl.haxx.se/docs/manual.html
 * 2. http://curl.haxx.se/docs/manpage.html
 *
 */
def execOptions = "-T \"$uploadFilePath\""
execOptions += " -u $userName:$password"
execOptions += " sftp://$hostName/$absolutePath"

def ant = new AntBuilder()

/*
 *
 * The command executed by curl will be logged in
 * the logs/DocumentBurster.log file
 *
 */
log.info("Executing command: curl.exe $execOptions")

/*
 *
 * 1. http://groovy.codehaus.org/Executing%20External%20Processes%20From%20Groovy
 * 2. cURL is printing its logging operations to the logs/cURL.log file
 *
 */
ant.exec(
		append: "true",
		failonerror: "true",
		output:"logs/cURL.log",
		executable: 'curl/win/curl.exe') {
			arg(line:"$execOptions")
		}
				

			

	PrevChapter 2. Using Scripts to Achieve More
	Top of page
	Front page

				
